Solvolysis of *cis*-[Pt(NH₃)₂Cl₂] in Dimethyl Sulphoxide and Reactions of Glycine with [PtCl₃(Me₂SO)]⁻ as Probed by ¹⁹⁵Pt Nuclear Magnetic Resonance Shifts and ¹⁹⁵Pt-¹⁵N Coupling Constants

By S. JOHN S. KERRISON and PETER J. SADLER*

(Chemistry Department, Birkbeck College, Malet Street, London WC1E 7HX)

Summary The formation of six products from the solvolysis of cis-[Pt(NH₃)₂Cl₂] in Me₂SO has been monitored by ¹⁹⁵Pt n.m.r. shifts and ¹⁹⁵Pt-¹⁵N coupling constants, the products including mono- and tri-ammine species; the same method allows a ready identification of the more thermodynamically stable isomer of [Pt(glycinate)(Me₂-SO)Cl] as that with O trans to S.

DESPITE the widespread use of Me_2SO as a solvent for the anti-tumour agent cis- $[Pt(NH_3)_2Cl_2]$ in pharmacobiochemical experiments,¹ there appears to be insufficient data available on its solvolytic products, mainly because few methods are available for following such reactions in detail. Me_2SO is known to be a strong (S-bonding) nucleophile toward Pt^{II}, exerting a high (kinetic) *trans* effect^{2,3} but since Pt-N bonds are usually considered to be inert⁴ the only major solvolysis product might be expected to be cis- $[Pt(NH_3)_2Cl(Me_2SO)]^+$, unless acid is present⁵ to drive the reaction towards NH_3 release. We describe here the identification of six solvolytic products of (1) using ¹⁹⁵Pt n.m.r. shifts and ¹⁹⁵Pt-¹⁵N coupling constants. The same procedure is then simply applied to confirm Erickson and Hahne's interpretation⁶ of the course of the glycine-[PtCl₃(Me₂SO)]⁻ reaction.

TABLE. Chemical shifts and coupling constants

		1 / (195Pt-	$I J(195 \text{Pt}-15 \text{N}) / \text{Hz}^{c}$, trans to		
Complex ^a	δ/p.p.m. ^b	ĊĬ-`	ŃĤa	Me ₂ SO	
(1)	2097	$312 \cdot 2$			
(2)	2354	317	278		
(3)	3046	336 ^d			
(4)	3067			232	
(5)	3126		287ª		
(6)	3147	340.0d		$233 \cdot 8$	
(7)	3224		288ª	232	
(8)	1602	317			
(9)	3110			244	
(10)	2747			226	
(11)	2902	330d			

^a (1)—(7) in Me₂SO, (8)—(11) in H₂O, all at 30 °C. ^b to high field of Na₂PtCl₆ in D₂O (external), ± 0.5 p.p.m. ^c ± 6 or ± 0.6 Hz if quoted to one decimal place. ^d cis to Me₂SO.

The spectrum of a 1 M solution of cis-[Pt(¹⁵NH₃)₂Cl₂][†] (1) in (AnalaR) Me₂SO 5-15 min after dissolution showed a signal due to a single species: a 1:2:1 triplet 2097 p.p.m. upfield of Na_2PtCl_6 with |J(195Pt-15N)| 312.2 Hz. This was assigned to intact (1), which may be solvated in the fifth and sixth positions. The first new species to appear, 1050 p.p.m. upfield of this, ca. 40 min later, and with four peaks of equal intensity was assigned to cis-[Pt(¹⁵NH₃)₂Cl(Me₂-SO)]⁺, (6), the only possible square-planar complex containing two nonequivalent nitrogen atoms. An upfield shift of ca. 1000 p.p.m. is expected for Cl- substitution by Me₂SO.⁷ 2 h later a further three species can be seen: a 1:2:1 triplet with a similar chemical shift to (6) and identified as trans-[Pt(¹⁵NH₃)₂Cl(Me₂SO)]⁺ (5), and about 80 p.p.m. downfield of this a pair of doublets assigned to cis- $(\hat{3})$ and trans-[Pt(¹⁵NH₃)Cl₂(Me₂SO)], (4). Their shifts, relative to (5), are as expected for NH_3 replacement by Cl⁻. The final species to appear in the spectrum each give a doublet of triplets and therefore contain three co-ordinated nitrogen atoms. They have a chemical shift difference of 870 p.p.m. and are assigned to $[Pt(^{15}NH_3)_3Cl]^+$ (2), and $[Pt(^{15}NH_3)_3(Me_2SO)]^{2+}$ (7). Figure 1 illustrates the spectra of all these species, and Figure 2 the variation of their concentrations with time.

The correct assignment of (3) and (4) is provided by their $|J(1^{195}\text{Pt}-1^{15}\text{N})|$ coupling constants, which are proportional to the *s* character of the Pt-N bond.⁸ This depends on the

FIGURE 1. 12.8 MHz ¹H-noise decoupled ¹⁹⁵Pt FT n.m.r. spectrum of a 1 M solution of cis-[Pt(¹⁵NH₃)₂Cl₂] (1), in dimethyl sulphoxide, 30 °C. This accumulation, total time 14 h, began 3 h after dissolution. (Sweep width 25 kHz, pulse interval 0.7 s, 8k computer points, 70° pulse). Shifts are to high field of (1), other assignments are given in the Table.

nature of the *trans* ligand and increases in the order Me₂SO $< NH_3 < Cl^-$. The Table shows that Me₂SO also exerts a small *cis* effect (*ca.* +15 Hz in ¹*J*).

FIGURE 2. Variation of the composition of a 1 M solution of (1) in Me₂SO with time, as determined from ¹⁰⁵Pt n.m.r. peak heights (errors due to T_1 and nuclear Overhauser effect differences are unknown, but may be small since T_1 's are expected to be short and all species have a two-bond Pt-H coupling).

[†] Prepared from K₂PtCl₄, ¹⁵NH₄Ac, and KCl following the method of V. V. Lebedinskii and V. A. Golovnya, *Neorg. Khim. Acad.* Nauk. S.S.S.R., 1947, **20**, 95 (*Chem. Abs.*, 1947, **44**, 5257).

 Pt^{II} -glycine complexes provide a neat application of this pattern of couplings. Reaction of PtCl42- with excess of [¹⁵N]glycine in H₂O gives a doublet with ${}^{1}J = 317$ Hz, due to a complex (8) with N trans to Cl^- . [PtCl₃MeSO₂]⁻, on the other hand, reacts with 1 equiv. (0.25 M) of [15N]glycine in H_2O to give initially a mixture of (9) and (10), but predominantly (10) on addition of 1 equiv. of OH⁻. Complex (10), with 1/ 226 Hz and N trans to S, isomerises on heating the solution to the more thermodynamically stable isomer (11), which has ${}^{1}J$ 330 Hz, confirming⁶ that here N is *trans* to Cl^- and *cis* to Me_2SO .

The quadrupole moment of ¹⁴N (I=1) leads to linewidths of ca. 200 Hz for cis-[Pt(14NH₃)₂Cl₂]⁺ in Me₂SO, compared to

ca. 8 Hz with ¹⁵N. Despite this and higher order multiplicities all species except (7) were again observed during solvolysis. [The concentration of (7) can be increased by addition of AgNO₃.] Complexes (2) and (3) appear to account for > 50% of the species present in a day-old solution at 90 °C, although some precipitation occurs.

We thank the S.R.C. for a grant to purchase the Pt n.m.r. probe and a studentship (to S.J.S.K.), and Johnson Matthey Ltd. for some support and loan of Pt.

(Received, 22nd August 1977; Com. 887.)

[‡] As a check that some of the solvolysis products from ¹⁵N-(1) were not due to impurities in the starting material, this compound was prepared by a different route; from K₂PtCl₄, KI, and NH₄OH-Ag⁺-Cl⁻ following the method of S. C. Dhara, Indian J. Chem., 1970, 8, 193.

¹ For example: J. M. Pascoe and J. J. Roberts, Biochem. Pharmacol., 1974, 23, 1345; C. K. Morris and G. R. Gale, Chem. Biol. Interactions, 1973, 7, 305.

- ² Y. N. Kukushkin, Y. E. Vyazmenskii, and L. I. Zorina, Russ. J. Inorg. Chem., 1968, 13, 1573.
 ³ P. D. Braddock, R. Romeo, and M. L. Tobe, Inorg. Chem., 1974, 13, 1170.
- ⁴ F. Basolo and R. G. Pearson, 'Mechanisms of Inorganic Reactions,' Wiley, New York, 1967.
 ⁵ R. Romeo and M. L. Tobe, *Inorg. Chem.*, 1974, 13, 1991.

- ⁶ L. E. Erickson and W. F. Hahne, Inorg. Chem., 1976, 15, 2941. ⁷ P. L. Goggin, R. J. Goodfellow, S. R. Haddock, B. F. Taylor, and I. R. H. Marshall, J.C.S. Dalton, 1976, 459.
- ⁸ P. S. Pregosin, H. Omura, and L. M. Venanzi, J. Amer. Chem. Soc., 1973, 95, 2047.